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ABSTRACT

The dynamics of the partially ionized solar atmosphere is controlled by the frequent collision and charge exchange

between the predominant neutral Hydrogen atoms and charged ions. At signal frequencies below or of the order of
either of the collision or charge exchange frequencies the magnetic stress is felt by both the charged and neutral

particles simultaneously. The resulting neutral-mass loading of the ions leads to the rescaling of the effective ion-

cyclotron frequency-it becomes the Hall frequency, and the resultant effective Larmor radius becomes of the order of

few kms. Thus the finite Larmor radius (FLR) effect which manifests as the ion and neutral pressure stress tensors

operates over macroscopic scales. Whereas parallel and perpendicular (with respect to the magnetic field) viscous
momentum transport competes with the Ohm and Hall diffusion of the magnetic field in the photosphere-chromosphre,

the gyroviscous effect becomes important only in the transition region between the chromosphere and corona, where

it competes with the ambipolar diffusion. The wave propagation in the gyroviscous effect dominated medium depends

on the plasma β (a ratio of the thermal and magnetic energies). The abundance of free energy makes gyro waves
unstable with the onset condition exactly opposite of the Hall instability. However, the maximum growth rate is

identical to the Hall instability. For a flow gradient ∼ 0.1 s−1 the instability growth time is one minute. Thus, the

transition region may become subject to this fast growing, gyroviscous instability.

Key words: Sun:atmosphere, photosphere, chromosphere, MHD, plasmas, waves.

1 INTRODUCTION

Except for the corona, the solar atmosphere is partially ion-
ized with varying degree of ionization in the photosphere,
chromosphere and transition region between the chromo-
sphere and corona. For example, the photosphere is weakly
ionized whereas the upper transition layer (closer to the coro-
nal boundary) is highly ionized with the partially ionized
chromosphere sandwiched in-between. The plasma particles
undergo frequent collision and charge exchange with the sea
of predominantly neutral hydrogen atom across the mag-
netically threaded, stratified layers of this partially ionized
gas. Thus the diffusion of the magnetic field in the solar
atmosphere is non-ideal and the Ohm, Hall and ambipo-
lar diffusion operates at the various level of this stratified
plasma. For example in the photosphere where the plasma
is weakly ionized and weakly magnetized, frequent collision
with the neutral stops the plasma particles from drifting with
the magnetic field. Thus, depending on the field strength,
Ohm may dominate all other diffusion in the photosphere.
With increasing altitude and thus with increasing fractional
ionization and ion-magnetization (measured by the ion-Hall
βi-a ratio of the ion-cyclotron and ion-neutral collision fre-
quencies; defined below) other non-ideal MHD effect kicks
in the photosphere-chromosphere region (Pandey & Wardle
2006, 2008; Pandey et al. 2008).

Only ambipolar diffusion seems to matter with increasing
ion-magnetization in the chromosphere and transition
(∼ 102−103 km) region. Since this region is a gateway to the
mass and energy transport to the corona, it is not surprising
that the role of ambipolar diffusion in dissipating the wave
energy towards generating non–thermal source of heating
has been the focus of recent research (De Pontieu et al.
2011; Moll et al. 2011; Zaqarashvili et al. 2011a,b,
2012, 2013; Khomenko & Collados 2012; Leake et al.
2014; Gangadhara et al. 2014; Soler at al. 2009, 2015;
Cally & Khomenko 2015; Shelyag et al. 2016; Khomenko
2017; Mart́ınez–Gómez et al. 2017; Mart́ınez–Sykora et al.
2017; Ballester et al. 2018; Cally & Khomenko
2018; Raboonik & Cally 2019; Muthsam et al. 2021;
Khomenko et al. 2021; Raboonik & Cally 2021). Thus the
canonical picture that emerges from the recent research
suggests that with increasing altitude the solar atmosphere
changes from weakly ionized and weakly magnetized Ohm
dominated photosphere to moderately ionized and highly
magnetized ambipolar dominated chromosphere with the
overlapping Ohm–Hall and Hall–ambipolar regions sand-
wiched in the middle (Pandey & Wardle 2012, 2013). Even in
the transition region between the chromosphere and corona
where the plasma number density exceeds the neutral density
by orders of magnitude (Fontenla et al. 1993) ambipolar
diffusion remains dominant non–ideal MHD effect albeit
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with decreased strength compared to the chromosphere.
However, as we shall see below, this picture is not entirely
accurate.

Both the neutral and plasma particle participate in the mo-
mentum transport due to parallel, perpendicular and gyro
FLR viscosity. While in the photosphere-chromosphere re-
gion, parallel and perpendicular viscosity due to neutral may
become important, in the transition region, when the plasma
number density exceeds the neutral number density such
that the ratio of the two densities are of the order of ion–
magnetization (the ion–Hall parameter), which is given by
the ratio between the ion–cyclotron ωci,

ωci =
eB

mi c
, (1)

(where e , B ,mi , c represents the charge, magnetic field, ion
mass and speed of light respectively) and ion–neutral (νin)
collision frequencies, i.e.,

βi =

(

ωci

νin

)

, (2)

another non–ideal MHD effect, namely the gyroviscous effect,
due mainly to ions, is lurking on the horizon.1 Therefore, with
increasing ionization, the finite Larmor radius (FLR) cross
field effect, which owing to the presence of unmagnetized
(βi < 1) ions appears as Hall effect in the upper photosphere,
and lower chromosphere, is reborn again in the transition re-
gion except this time it appears as gyroviscous effect due to
ion magnetization (βi > 1). In table 1, we summarize the list
of frequently used symbols in this paper.

The solar photosphere–chromosphere and transition region
is a partially ionized mixture of ions and neutrals with the
ionization fraction

Xe =
ne

nn
, (3)

as low as 10−4 around the photospheric temperature mini-
mum and as high as & 104 in the upper transition region
(Fontenla et al. 1993). Here ne and nn are the number den-
sities of the electrons and neutrals respectively.

Owing to the high collisionality, ions (number density ni)
could be tightly coupled to the neutrals so that they pick up
the neutral inertia, gaining an effective mass

m∗
i =

mi ni +mn nn

ni
, (4)

in the process and thus are unable to fully respond to
the changes with frequencies in excess of Hall frequency
(Pandey & Wardle 2006, 2008)

ωH =

(

mi

m∗
i

)

ωci . (5)

Implied in this description is the assumption that the colli-
sions are able to provide strong coupling between the ions
and neutrals, i.e.,

ω .

(

ρ

ρn

)

νni . (6)

Here ω is the signal frequency, ρ = ρi + ρn is the bulk mass

1 The ion-neutral collision frequency, νin can be easily general-
ized to include the ion-ion, and ion-electron collision frequencies
(Appendix A) in the βi definition.

density and ρi ,n = mi ,n ni ,n are the ion and neutral mass
densities.
It becomes immediately clear from Eq. (4) that the dressed

ion mass increases dramatically in a weakly ionized environ-
ment since m∗

i ≈ mn/Xe (here we have assumed that the
plasma is quasineutral i.e., ni ≈ ne). As a result the Lar-
mor radius in a weakly ionized medium is a function of the
fractional ionization (Pandey 2013)

R∗
L =

(

cs
ωH

)

∼ X−1
e RL , (7)

and will be much larger than its counterpart, RL = cs/ωci

in the fully ionized medium. Here cs =
√

kB T/mi is the ion
thermal/sound speed and kB , T is the Boltzmann constant
and temperature respectively. With increasing ionization R∗

L

approaches RL.
The ratio of the effective Larmor radius R∗

L and Hall scale
LH = vA/ωH becomes

(

R∗
L

LH

)

∼
(

cs
vA

)

∼
√

β . (8)

Here vA = B/
√
4π ρ is the Alfvén speed in the bulk fluid and

plasma beta

β =
2 c2s
v2A

, (9)

is the ratio of the plasma thermal and magnetic energies.
Adopting an altitude dependent profile of the magnetic

field

B = B0

(

nn

n0

)0.3

, (10)

that captures the essential height variation of the observed
fields in the flux tubes (Martinez et al. 1997) and taking
the neutral number density and fractional ionization from
Model C (Vernazza et al. 1981) shows that the Ohm, Hall
and ambipolar diffusion dominates various altitude of the at-
mosphere (Pandey & Wardle 2013). The improved model of
Fontenla et al. (1993) also gives similar diffusion coefficient
in the photosphere–chromosphere and transition region (Ap-
pendix C).
In Fig. (1), we plot the ratio R∗

L/LH using model C of
Fontenla et al. (1993) and assuming B0 = 100G at the foot-
point. For Hall βi, we have used νi [Eq. (A8), Appendix A]
which apart from νin also includes νii and νie. It is clear
that R∗

L dominate LH in the photosphere, lower chromo-
sphere and then in the transition region. Thus, as βi < 1
in the photosphere-lower chromosphere, or βi > 1 in the
middle and upper chromosphere, the magnetic diffusion (due
to Hall, or ambipolar) will be accompanied by the parallel
and perpendicular viscous momentum transport. However,
in the transition region, where ions are magnetized (βi > 1 ),
R∗

L/LH ≫ 1, and as we shall see from Fig. (2), R∗
L/LA ≫ 1

(ambipolar scale, LA = vA/νni), ambipolar diffusion disap-
pears and gyroviscous momentum transport becomes impor-
tant.
Kinetic theory provides an appropriate framework to inves-

tigate the role of FLR effects at any wavelength, k−1 (here k is
the wavenumber) on the plasma dynamics (Rosenbluth et al.
1962). However, in the various limiting cases, i.e., for a
given wavenumber k when k RL > 1, or k RL . 1,
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Figure 1. The ratio R∗
L/LH and ion–Hall parameter βi are plot-

ted against height for B0 = 100G. The altitude dependence of
the magnetic field is taken from Eq. (10) and data from table 2
(model C) of (Fontenla et al. 1993) have been used for density and
temperature. For better resolution, the upper transition region has
been shown separately in the lower panel.

magnetohydrodynamic (MHD) framework is easily extend-
able to include the FLR effect by either modifying the
induction (Hassam & Huba 1988), or momentum equation
(Roberts & Taylor 1962). When k RL > 1 only FLR modifi-
cation to the MHD of fully ionized plasma is the appearance
of Hall term in the induction equation. However, as we shall
see, in a partially ionized plasma the parallel and perpendic-
ular viscosity due to neutrals becomes as important. When
k RL < 1 perpendicular and gyro viscosity appears in the
extended MHD framework (Braginskii 1965).

Although in partially ionized plasmas, the measure of ion
magnetization is given by the ion–Hall parameter βi, it is not
difficult to see that the large larmor radius limit, k R∗

L > 1
and βi < 1 is equivalent. In order to see this, lets equate the
neutral–ion collision mean free path,

λmfp ∼ cs
νni

, (11)

with the fluctuation wavelength, k−1. This yields

k R∗
L ∼ 1

βi
. (12)

Therefore, kR∗
L > 1, and βi < 1 are equivalent. Clearly,

the reduced single fluid description of the partially ionized
plasma by Pandey & Wardle (2006, 2008) anticipates large
larmor radius (k R∗

L > 1, or βi < 1) correction to the induc-
tion equation although parallel and perpendicular viscosity
(which is mainly due to neutrals) was not considered. Further
the small larmor radius, k R∗

L < 1, (or βi > 1) limit which is
dominated by the perpendicular and gyroviscous stress has
not been considered. As we shall see this correction becomes
quite important in the upper chromosphere, and transition
region between the chromosphere and corona.

To summarize, in a partially ionized medium, due to their
frequent collision with the neutrals, ions acquire an effective

mass m∗
i . As a result of this mass loading by the neutrals

the ion–cyclotron frequency, ωci becomes Hall frequency ωH

(Pandey & Wardle 2006, 2008). Therefore, the Larmor radius
of the dressed ion becomes a function of the fractional ion-
ization of the medium. As the magnetic field cannot directly
couple to the neutrals, the mass loading of the ion implies
that only for the frequencies of interest that satisfies Eq. (6),
i.e., for the low frequency long wavelength fluctuations in the
medium this physical description is valid.
When charge exchange is either as frequent as neutral–ion

collision, or is dominant, we can as well derive the above
expression for the Hall frequency, Eq. (5) and the modified
ion Larmor radius, Eq. (7) by arguing that the ion acquires
an effective reduced charge rather than an effective increased

mass. Recall that when the neutral Hydrogen atom loses an
electron to a nearby ion (usually neutralizing it) charge ex-
change/transport occurs. Post exchange neutral Hydrogen
becomes new ion and ion becomes new neutral Hydrogen
atom. Thus, the charge exchange represents a coupling pro-
cess between the ions and neutrals (Hazeltine & Waelbroeck
1998). In a thermalized plasma environment when there is
no energy transfer between the ions and neutrals, if this ex-
change of identity is sufficiently rapid, the charge on the par-
ticle will flip–flop between 0 and q acquiring in the process
an effective charge (Vranjes 2016)

qef =

(

ρi
ρ

)

q . (13)

Making use of qef instead of e = q in Eq. (1) we get Eq. (5),
i.e. ion gyrates at Hall frequency ωH around the magnetic
field. Also the effective Larmor radius is now R∗

L and not
RL. Only requirement is that the exchange of charge between
the ions and the neutrals should be rapid enough over the dy-
namical time scale i.e. must satisfy Eq. (6) where the collision
frequency on the right hand side now will also include charge
exchange frequency.
Is the process of charge exchange rapid enough in the so-

lar atmosphere in comparison with the dynamical timescale,
ω−1? As the charge exchange cross-section is of the same or-
der as the momentum exchange cross–section [Fig. 2, Vranjes
(2016)], the charge exchange frequency is comparable to
the ion–neutral collision frequency. One–dimensional, semi–
empirical, non–LTE, hydrostatic model of transition region
(Fontenla et al. 1993) assumes that the main collisional inter-
action between protons and hydrogen atoms is elastic charge
exchange. The inequality Eq. (6) is easily satisfied for the
charge exchange process. Therefore, we may assume that the
ions either have same charge but an effective mass, or same
mass but an effective charge. These complementary viewpoint
results in the identical spatial and temporal scales. Clearly
the single fluid description of partially ionized solar plasma
(Pandey & Wardle 2006, 2008) anticipates charge exchange.
Most solar heating, with the possible exception of flares,

takes place in the partially ionized chromosphere and transi-
tion region. The lower chromosphere is threaded by the strong
(∼ kilogauss) vertical flux tubes located in the network re-
gions where they are observed as bright points (Hasan 2009).
These flux tubes starts near the foot point in the photo-
sphere, expand with increasing height before filling the entire
atmosphere and forming a canopy in the chromosphere. The
transition region is threaded by a mixture of hot and cold
magnetic loops (Athay & Dere 1991; Dowdy 1993). As these

MNRAS 000, 1–?? (2021)



4 B.P.Pandey and Mark Wardle

Table 1. List of frequently used symbols.

Sybmol Explanation Symbol Explanation

Xe Ionization fraction mi ,m∗
i ion and effective mass

ωci ion-cyclotron frequency ωH = mi
m∗

i
ωci Hall frequency

νi Sum of νii , νin , νie νn Sum of νnn , νni , νne

cs =
√

kB T
mi

sound speed vA = B√
4π ρ

Alfvén speed

R∗
L = cs

ωH
Larmor radius β =

√

2 c2s
v2

A

plasma beta

βi =
ωci
νi

Ion hall beta ηi ,n 0 ,1 ,2 ,3 ,4 viscosity coefficients

ν0 = (ηi 0 + ηn 0)/ρ parallel viscosity ν1 ,2 = (ηi 1 ,2 + ηn 1 ,2)/ρ perpendicular viscosity

ν3 , ν4 = (ηi ,3 ,4 + ηn ,3 ,4)/ρ gyro viscosity W
≈

strain tensor

W
≈ 0

parallel strain tensor W
≈ 1

,W
≈ 2

perpendicular strain tensors

W
≈ 3

,W
≈ 4

cross strain tensors LA = vA/νni , LH = vA/ωH Ambipolar and Hall scale
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Figure 2. The Larmor radius RL
∗(cm) and ambipolar length scale

LA(cm) are plotted for B0 = 50G (top panels), and B0 = 100G
(bottom panels) fields. For better resolution, the upper 32 km of
the transition region (right hand panel) has been plotted sepa-
rately. The altitude dependence of the magnetic field and the den-
sity and temperature profiles are same as in the previous figure.

regions are threaded by flux tubes the magnetic field plays an
important role in transporting the convective energy to heat
the plasma locally. It is believed that the dissipation of the
Alfvénwaves in the chromosphere and transition region is a
plausible non–thermal energy source that may heat the entire
corona (Khomenko & Collados 2012; Mart́ınez–Sykora et al.
2017; Srivastava at al. 2021).

As ions are highly magnetized (βi ≫ 1) in the upper chro-
mosphere and transition region, it would appear that the only
non–ideal MHD effect that needs to be considered in this re-
gion is ambipolar diffusion. However, as we see from Fig. (2),
gyroviscocity may become dominant transport mechanism in
the transition region. Assuming B0 = 50G Fig. (2, top pan-
els), or 100G Fig. (2, lower panels), we see that the gyrovi-
socus scale RL

∗ dominates ambipolar scale LA up until the
middle chromosphere. From the middle to the upper chromo-
sphere LA dominates RL

∗, although for a weaker (B0 < 50G)

field, RL
∗ may dominate LA in the upper chromosphere.

Finally in the transition region (& 2.2Mm), neutral hydro-
gen density plummets, ambipolar diffusion almost disappears
and RL

∗/LA ≫ 1. Clearly, gyroviscous momentum transport
is the dominant non–ideal MHD effect in the transition re-
gion between the chromosphere and corona. Therefore, FLR
effect manifests twice in the solar atmosphere: (a) first as
the parallel and perpendicular viscosity (mainly due to neu-
trals) together with the magnetic (Hall) diffusion at short
(k R∗

L ∼ 1/βi > 1) wavelengths in the photosphere and chro-
mosphere, and (b) as the gyroviscosity (mainly due to ions)
in the transition region when (k R∗

L < 1). As the gyroviscous
effect causes polarized waves that propagate at scaled (by
plasma β) whistler and Hall frequencies, these waves may
propagate through the transition region with little, or no
damping.
Rotating features are ubiquitous in the solar atmosphere.

Photospheric vortical motions often force co–localized mag-
netic flux tubes in the intergranular lanes (which threads
the upper atmosphere) to rotate. This in turn produces
observable corotating structures in the chromosphere and
corona as chromospheric swirls and magnetic tornadoes re-
spectively. These rotating magnetic structures occur over
a large range of spatial scales and extend from the upper
convection zone to the transition region and lower corona
(Kato & Wedemeyer 2017). A small (granular) scale vortices
in the quiet Sun has also been observed recently (Park at al.
2016). The small scale (< 0.4 − 0.5Mm)) vortex motion
in the moderately magnetized (network) regions are typ-
ically associated with the intergranular convective down-
drafts (Bonet et al. 2008; Manso sainz et al. 2011). Most vor-
tices are small (. 0.5Mm) with average size of few hun-
dred km and typical lifetime of few minutes, although large
vortices ∼ 20Mm with lifetime & 20min have also been
observed (Attie et al. 2009). The bright points associated
with the vortex motion in the intergranular lane moves with
typical speed . 2 km/s (Wedemeyer-Böhm & Voort 2009).
All in all the vortex-—like, or swirling flows are ubiqui-
tous in the photosphere–chromosphere (Bonet et al. 2008;
Wedemeyer-Böhm & Voort 2009; Balmaceda et al. 2010;
Bonet et al. 2010).
The formation of small, granular–scale vortices in quiet

regions of the Sun is a generic feature of the turbulent con-
vective sub–surface layers (Zirker 1993; Stein & Nordlund
1998; Nordlund et al. 2009; Muthsam et al. 2010). The MHD

MNRAS 000, 1–?? (2021)



The non-ideal finite Larmor radius effect in the solar atmosphere 5

simulations suggest that small–scale eruptions in the so-
lar atmosphere can be driven by magnetized vortex tubes,
i.e., by magnetic tornadoes (Moll et al. 2011; Shelyag et al.
2011; Wedemeyer-Böhm et al. 2012; Kitiashvili et al. 2013;
Wedemeyer-Böhm & Steiner 2014). The quasiperiodic (2 −
5min) plasma eruptions in swirling tubes are gener-
ated by the turbulent convection in subsurface layers
(Kitiashvili et al. 2013). However, not all photospheric vor-
tex flows have a chromospheric counterpart. In fact the
occurrence rate of chromospheric vortex flows is much
smaller (by an order of magnitude) than the correspond-
ing rate (3.1 × 103 Mm−2 s−1) for photospheric vortices
(Kato & Wedemeyer 2017). This is because the vortex flow
is also present in the chromosphere only when the footpoint
of the magnetic flux tube in the photosphere coincides with
the photospheric vortex tube (Wedemeyer-Böhm & Steiner
2014). Therefore, the topology of the magnetic field plays
crucial role in facilitating the transfer of swirling motion
from the photosphere to the chromosphere. The non-ideal
MHD simulation also show that the Hall effect can gen-
erate out-of-plane velocity fields with maximum speed ∼
0.1 km/s at the interface layers between weakly magnetized
light bridges and neighbouring strong field umbral regions
(Cheung & Cameron 2012). Clearly, both the observation
and numerical simulation points to the presence of shear flow
at various spatial scales in the solar atmosphere.

Heating of the corona of magnetically quiet solar at-
mosphere and the origin of solar wind requires an energy
flux ∼ 1 − 3 × 103 − 104 erg cm−2 s−1. Magnetic vortices
are closely related to the local heating (Moll et al. 2011;
Wedemeyer-Böhm & Steiner 2014). Solar tornadoes may fa-
cilitate the transfer of vortex energy to the chromosphere and
corona and thus contribute to their heating.

The presence of free shear flow energy in the transition
region can easily make waves ustable. Therefore, we shall in-
vestigate the local stability of the waves in the transition
region due to gyroviscosity by assuming that the magnetic
field is immersed in the highly diffusive medium. Further, we
shall compare and contrast the gyroviscous shear instability
with the non–ideal Hall instability (Pandey & Wardle 2012,
2013). As the solar atmosphere is highly stratified, the va-
lidity of the present local analysis is restricted to the short
(with respect to the scale height, h) wavelength fluctuations,
i.e., k h ≫ 1. As k ∼ νni/cs, and h ∼ cs/ω, the requirement
k h ≫ 1 translates into Eq. (6). Because the flux tube will
be approximated by a planar geometry, our analysis is valid
only for the wavelengths much smaller than the tube radius
r, i.e., k r ≫ 1.

2 BASIC SET OF EQUATIONS AND WAVES
AND INSTABILITIES IN THE MEDIUM

The solar atmosphere is a partially ionized medium with
neutral hydrogen atom as its main constituent in the
photosphere-chromosphere. Number density of plasma par-
ticles (compared to the neutrals) remains very low in the
photosphere and low and middle chromosphere. However, the
plasma number density becomes comparable to the neutral
number density in the upper chromosphere before exceeding
it in the transition region (Fontenla et al. 1993). Due to their
great simplicity, a single fluid MHD like description of the

multi–component solar plasma provides an optimal frame-
work to investigate the waves and instabilities in the medium.
The starting point is the following set of Braginskii equations
(Braginskii 1965; Goedbloed & Poedts 2004; Schnack 2009)

∂ρj
∂t

+∇ · (ρj vj) = 0 , (14)

dve

dt
= −∇Pe

ρe
− ∇ ·Πe

ρe
− e

me

(

E +
ve

c
×B

)

−Rej , (15)

dvi

dt
= −∇Pi

ρi
− ∇ ·Πi

ρi
+

e

mi

(

E +
vi

c
×B

)

−Rij , (16)

dvn

dt
= −∇Pn

ρn
− ∇ ·Πn

ρn
+

∑

j=e,i

νnj (vj − vn) . (17)

Here j = i, e, n. We shall assume that the ions are singly
charged and adopt charge neutrality, so that ni ≈ ne. The
collisional terms in the above momentum equations are

Rej =
∑

j=i,n

νej (ve − vj) , Rij =
∑

j=e,n

νij (vi − vj) , (18)

where νej and νij are the electron and ion collision frequencies

with the jth particle.
The non–diagonal viscous stress tensor is calculated from

the linearized kinetic equations (Braginskii 1965; Callen
1986) and can be written in the component form as

Π
≈

= Π
≈‖

+Π
≈⊥

+Π
≈Λ

. (19)

Here ‖ ,⊥ ,Λ are the parallel [b(b · ∇)], perpendicular [−b×

(b×∇)] and cross (b×∇) terms with respect to the magnetic
field direction b = B/B. Thus the momentum transport due
to Braginskii tensor Π

≈

consists of (a) transport along the

magnetic field lines–Π
≈ ‖

, i.e., field–free transport, (b) perpen-

dicular transport, Π
≈⊥

which is smaller (comparable) to the

field–aligned transport by ∼ 1/β2
i for the ions (neutrals), and

(c) gyro, or cross–field transport, Π
≈Λ

which is smaller (negli-

gible) by the factor ∼ 1/βi for the ions (neutrals) compared
to the field–aligned transport.
In terms of rate of strain W

≈

, stress tensor Π
≈

is

Π
≈

= −η0 W
≈ 0

− η1 W
≈ 1

− η2 W
≈ 2

+ η3 W
≈ 3

+ η4 W
≈ 4

, (20)

The various ion and neutral η coefficients are related to the
plasma pressure, magnetization and collsion frequencies (Ap-
pendix A). Tensor W

≈ j
in the above Eq. (20) is expressed in

terms of W
≈

[Eq. 30] via Eq. (A22) (detail in the the Ap-

pendix A). First term in the above Eq. (20) is the parallel
stress, second and third is the perpendicular stress and the
last two terms is the cross stress which is called gyroviscous
stress.
In order to assess the relative importance of these viscous

terms, we compare them with the neutral pressure gradi-
ent term. Thus in the transition region, comparing the field-
aligned viscous term to the neutral pressure gradient yields

|∇ · Π‖|
|∇Pn|

∼ ηi 0|∇v|
Pn

∼ Pi

Pn

|∇v|
νi

∼ Xe , (21)

where we have assumed that |∇v| ∼ νi, ηn 0/ηi 0 < 1 and
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Figure 3. The ratio ηn 0/ηi,0 (solid curve) and νn/νi (dotted
curve) are plotted against height for B0 = 100G for the same
altitude dependence of the magnetic field and density and temper-
ature as in the previous figure.

νn/νi . 1) (Fig. 3). In the photosphere-chromosphere re-
gion however, ηn 0/ηi 0 > 1 and parallel viscosity transport is
mainly due to neutrals. Thus

|∇ ·Π‖|
|∇Pn|

∼ ηn 0|∇v|
Pn

∼ O(1) . (22)

Similar ratio for the perpendicular term in the transition
region is

|∇ ·Π⊥|
|∇Pn|

∼ Xe

β2
i

, (23)

while in the photosphere-chromosphere it becomes

|∇ · Π⊥|
|∇Pn|

∼ O(1) . (24)

For the gyroviscous term we have

|∇ ·ΠΛ|
|∇Pn|

∼
(

Pi

Pn

)

1

βi
, (25)

Clearly if this ratio is ∼ O(1) the gyroviscous term in the mo-
mentum equation will become as important as the pressure
gradient terms. In a thermalized (Ti = Tn) plasma environ-
ment, this can be recast in terms of fractional ionization,
Xe ∼ βi. We see from Fig. (4) that for B0 = 50G, Xe/βi ∼ 1
whereas for B = 100G field, Xe/βi ∼ 0.5. Thus the role
of gyroviscous effect in the momentum transport can not be
ignored in the transition region.

The various component of Braginskii tensor Π
≈ i

and Π
≈n

is

given in the Appendix A. Relative contribution of the electron
viscosity to the stress tensor is important only if the electron
temperature Te satisfies (Zhdanov 2002) Te ∼ (mi/me)

1/5 T ,
or Te & 4.49 T . However, as the partially ionized solar plasma
is in thermal equilibrium (Te = Ti = Tn = T ), electron vis-
cosity is unimportant and thus has been neglected. We shall
also neglect the electron inertia. Defining the mass and cur-

0 0.5 1.0 .1.5 2.19
0

0.2

0.4

X
e
/

i

B=50 G

2.19 2.20 2.21 2.22
0

0.5

1

B=50 G

0 0.5 1.0 1.5 2.19

Height(Mm)

0

0.1

0.2

0.3

X
e
/

i

B=100 G

2.19 2.20 2.21 2.22

Height(Mm)

0

0.1

0.3

0.5

B=100 G

Figure 4. The ratio Xe/βi is plotted for B0 = 50G (top panels)
and B0 = 100G (bottom panel). Other parameters are same as in
the previous figure.

rent densities and velocity of the bulk fluid as

ρ = ρe + ρi + ρn ≈ ρi + ρn ,

J = e ne (vi − ve) ,

v = (ρi vi + ρn vn)/ρ ≡ (1−D) vi +D vn , . (26)

where

D =

(

ρn
ρ

)

, (27)

the above momentum equations, in the absence of Braginskii
tensor can be reduced to a single fluid, MHD like momentum
equation valid for arbitrary ionization provided the dynam-
ical frequency ω satisfies Eq. (6) (Pandey & Wardle 2006,
2008). When ions are weakly magnetized (βi . 1) parallel and
perpendicular (comparable to the parallel) viscosities mainly
contribute to the viscous stress (Appendix A, Fig. A1). On
the other hand, when ions are highly magnetized (βi ≫ 1) gy-
roviscosity is the main contributor to the viscous momentum
transport.
In order to incorporate Πi

≈

andΠn
≈

in the single fluid frame-

work, we note that

vi = v −D (vn − vi) , (28)

and

D (vn − vi) ∼ D
J ×B

c
∼ D

v2A
Lνni

, (29)

for the gradient of scale length L. Thus for |v| ∼ vA the last
term in Eq. (28) can be neglected provided Eq. (6) is satisfied.
Thus assuming vi ≈ v the strain tensor W

≈

W
≈

= ∇v + (∇v)T − 2

3
I
≈

∇ · v , (30)

now correspond to the strain in the bulk fluid.
We write Π

≈

= Π
≈ i

+Π
≈n

where Π
≈

in terms of rate of strain

W
≈

is

Π
≈

= −ρν0W
≈ 0

−ρν1 W
≈ 1

−ρ ν2 W
≈ 2

+ρν3W
≈ 3

+ρν4 W
≈ 4

, (31)
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The non-ideal finite Larmor radius effect in the solar atmosphere 7

with

ν0 =
ηi 0 + ηn 0

ρ
. (32)

Similarly for ν1 , ν2 , ν3 , and ν4. Writing P = Pi + Pn + Pe

and adding the momentum equations together, we arrive at
the following single fluid equations

∂ρ

∂t
+∇ · (ρv) = 0 , (33)

ρ
dv

dt
= −∇P −∇ ·Π

≈

+
J ×B

c
. (34)

The viscous stress term also modifies the generalized Ohms
law. This leads to the appearance of an additional term in
the induction equation Eq. (25) of Pandey & Wardle (2008)
proportional to (D2/ρiνin)(∇·Π×B) which can be neglected
with respect to the advective (v ×B) term if

ω .

(

vA
cs

)(

ρ

ρn

)

νni . (35)

When ρi & ρn the neglect of ∇P × B terms with re-
spect to the v × B term also guarantees the neglect of vis-
cous contribution in the induction equation, i.e., Eq. (26) of
Pandey & Wardle (2008) guarantees Eq. (35). Thus the con-
tribution of viscous terms to the generalized Ohms law can be
neglected. As a result, the induction equation remains same
as in Pandey & Wardle (2008)

∂B

∂t
= ∇×

[

(v ×B)− 4π ηO
c

J − 4π ηH
c

J × b

+
4πηA

c
(J × b)× b

]

, (36)

The Ohm (ηO), ambipolar (ηA) and Hall (ηH) diffusivities
are

ηH =

(

v2A
ωH

)

, ηA = Dβi ηH , ηO = β−1
e ηH , (37)

Eqs. (33), (34) and (36) together with the barotropic relation
P = c2s ρ and Ampére’s law

J =
c

4π
∇×B . (38)

provides the single fluid MHD description with the FLR cor-
rection of a partially ionized plasma. As can be seen from
Eq. (36), when ions are unmagnetized, i.e., Hall βi < 1, Hall
dominates ambipolar diffusion. The perpendicular viscosity,
which is almost independent of the Hall βi, is also important
in this regime. When βi > 1, ambipolar diffusion dominates
Hall. As a result, perpendicular and gyroviscous momentum
transport operates together with the ambipolar diffusion in
this regime.

To summarize, the single fluid MHD description of a par-
tially ionized plasma (Pandey & Wardle 2006, 2008) with the
non–ideal, FLR Hall correction has been generalized here to
include the parallel, perpendicular and gyro viscosity. The
parallel and perpendicular viscosity (which is mainly due to
neutrals), is almost independent of the ion magnetization,
i.e., the value of ion–Hall βi. The ion magnetization deter-
mines whether the Hall diffusion or, gyroviscosity is impor-
tant.

3 WAVES IN THE SOLAR ATMOSPHERE

As has been noted in the introduction, the magnetic struc-
tures in the solar atmosphere are highly dynamic and accom-
panied by numerous flows and shocks of various spatial and
temporal scales. Here we shall assume that the spatial scale
of the flow is much smaller than the typical diameter of a
flux tube. Thus for the small scale (compared with the typ-
ical diameter of a flux tube) swirls in the chromosphere, we
shall approximate part of the cylindrical tube by a planar
sheet and work in Cartesian coordinates where x , y , z corre-
spond to the local radial, azimuthal and vertical directions.
We assume an initial homogeneous state with azimuthal lin-
ear shear flow profile v = s xy with the shear s = v0

′ being
constant. We shall also assume a uniform background field
that only have a vertical component, i.e. B = (0, 0, Bz). In
the presence of a purely vertical magnetic field (along z in
the Cartesian geometry), the dispersion relation for the waves
propagating along the magnetic field is (Appendix B)

X2 + Y 2 = s
[

(ω4 − ωW ) X + (ωP − ω2) Y
]

. (39)

Here

X = σ2 + (ωP + ω2) σ + ωP ω2 − ωW ω4 + ωA
2 ,

Y = (ωW + ω4) σ + ωP ω4 + ωW ω2 , (40)

and

ωA = k vA , (41)

is the Alfvén frequency.
We can see from Eq. (39) that only in the presence of Hall

(ωW 6= 0), or gyroviscosity (ω4 6= 0), shear can channel free
energy to the waves. Similarly, the presence of perpendicular
viscosity, or ambipolar diffusion causes the damping of waves.
To uncover the nature of these waves, we shall first analyze
the dispersion relation, Eq. (39) in the absence of shear. Thus
after setting, s = 0, Eq. (39) becomes

σ2 + k2 (ν + η) σ + k4 ν η + ωA
2 = 0 , (42)

where

ν = ν2 ± i ν4 ,

η = ηP ± i ηH . (43)

Case I: ωW = ω4 = 0 (No Hall, No gyroviscosity).
From Eq. (42) we get the following damping roots for σ =
−i ω

ω =
−i

2
(ω2 + ωP )± ωA

[

1−
(

ω2 − ωP

2ωA

)2 ]1/2

(44)

Thus for small (with respect to ωA) ω2 ≡ k2 ν2 and ωP ≡
k2 ηP , the above dispersion relation describe an Alfvénwave
propagting at ω ≈ ωA and experiencing damping at a rate
(ω2 + ωP )/2. For large ω2 and ωP there is no oscillatory so-
lution, only damping.
In the absence of ηP , Eq. (44) provides the following cutoff

wavelength due to perpendicular viscosity

λc ,ν2 =
πν2
vA

, (45)

below which wave can not propagate in the medium. In the
photosphere-chromosphere, where ρ ∼ ρn,and ν2 ∼ λmfp cs,

the cutoff wavelength becomes λc ∼ √
β λmfp.
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Figure 5. The cut–off wavelength λC due to perpendicular viscos-
ity, λc ,ν2 and due to ambipolar diffusion, λc ,ηA against height is
plotted for B0 = 50G (curves labelled 1) and B0 = 100G (curves
labelled 2). The altitude dependence of the magnetic field, density
and temperature is the same as in the previous figures.

As we see from Eq. (44), ambipolar diffusion provides an-
other cutoff wavelength

λc ,ηA = π
vA
νni

, (46)

Thus only waves above cut–off wavelength

λc = max(λc ,ν2 , λc ,ηA) , (47)

can propagate in the photosphere-chromosphere without
damping.

In Fig. (5) we plot the cut–off wavelength λc due to perpen-
dicular viscosity, λc ,ν2 and ambipolar diffusion, λc ,ηA against
height for B0 = 50G (curves labelled 1) and B0 = 100G
(curves labelled 2). We notice that for B0 = 100G field damp-
ing in the chromosphere is mainly due to ambipolar diffusion
while for a weaker (50G) field, ambipolar and perpendicu-
lar viscosity in equal measure damps the wave in the upper
chromosphere. In the transition region it is perpendicular vis-
cosity that is responsible for wave damping. To summarize,
for weaker field, both ambipolar and perpendicular viscosity
are important to the wave damping in the upper chromo-
sphere while perpendicular viscosity is the dominant damp-
ing mechanism in the transition region. For stronger field,
perpendicular viscosity is important only in the transition
region. Therefore, the role of perpendicular FLR viscosity
(which is mainly due to neutrals) may become important to
the wave heating in this region.

Case II: ω4 6= 0 (When gyroviscosity is present).
In the absence of Pedersen diffusion and perpendicular vis-
cosity, the dispersion relation Eq. (42) describe polarized Hall
and whistler waves. We analyse Eq. (42) in the following lim-
iting cases before subjecting it to numerical solution.

In the absence of gyroviscosity, i.e., when ν4 = 0 we recover
the low (ω ≪ ωA) and high (ωA ≪ ω) frequency left circu-
larly polarized ion–cyclotron (ω = ωH) and right circularly
polarized whistler (ω = ωW = k2 ηH) waves from Eq. (42).
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Figure 6. The plasma β = 2 c2s/v
2
A is plotted against the height

for B0 = 100G (solid curve) and B0 = 200G (dotted curve) field.
The other parameters are same as in previous figures.

When ν4 6= 0 and ηH = 0, in the low frequency (ω ≪ ωA)
limit, when the magnetic and gyroviscous stress balance each
other, Eq. (42) gives

ωgh =
v2A
ν4

≃ G(ρ)

β
ωH , (48)

which is scaled, left circularly polarized Hall wave. We call
this low frequency branch gyro-Hall wave, ωgh to distinguish
it from the Hall wave, ωH . Here

G(ρ) = 8

(

ρ

ρi

)2

, (49)

is proportional to the density ratio and is ∼ O(1) in the upper
chromosphere and transition region.
The high frequency (ωA ≪ ω) frequency branch (when the

magnetic stress is unimportant and fluid inertia balances the
gyroviscous stress) becomes

ωgw = ω4 ≃ β

G(ρ)
ωW , (50)

which describes the scaled right circularly polarized whistler
(ωW = k2 ηH) wave. We call this branch gyro-whistler wave,
ωgw.
In the above equations we have used ν4 = ηi 3/2 ≃

(β/8)(ρi/ρ)
2 ηH valid in the βi ≫ 1 limit. As ρ ∼ ρi in the

transition region, two branches of gyroviscous wave are scaled
(by plasma β) Hall branches. With increasing magnetic field
strength, the plasma β decreases (Fig. 6). However, even for
very strong field at the footpoint, plasma β > 1 in the tran-
sition region. Thus the gyroviscous wave propagates at fre-
quencies much higher than the whistler frequency, ωW . To
summarize, both Hall and gyroviscous effect excite similar
waves in the solar atmosphere except that they operate in
different ion-Hall window and at different frequencies.
To see that the gyro-Hall and gyro-whistler waves are in-

deed left and right circularly polarized waves, from Eq. (B3)
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is plotted for the gyro-whistler and gyro-Hall waves respectively.

and Eq. (B4), we get
(

X Y
−Y X

)

δv⊥
vA

= 0 . (51)

From the dispersion relation, Eq. (39), we have X = ±i Y .
Plugging it back in the Eq. (51) leads to

δvy = ±i δvx , (52)

i.e., δvy leads (lags) δvx by π/2. Clearly velocity fluctuations,
in general are the superposition of left-circularly polarized
gyro-Hall, δvx1 and right-circularly polarized gyro-whistler
δvx2 waves

δv = δvx1 (1 , i , 0) e
i (ωgh t+k z)+δvx2 (1 ,−i , 0) ei (ωgw t+k z) .

(53)
Numerical solution of the Eq. (42) is shown in Fig. (7). As

expected, the gyroviscosity, like Hall lifts Alfvén degeneracy
and waves are splits into low-frequency gyro-Hall (for nega-
tive sign before ν4 term in the dispersion relation (42)) and
high-frequency gyro-whistler waves (for positive sign before
ν4 term) [panel (a) in the figure]. However, perpendicular vis-
cosity ν2 = 2 ν4 causes severe damping of the gyro-whistler
wave [solid curve, panel (b)]. When ambipolar diffusion is
switched on, i.e. take βi = 2, damping rate is not significantly
impacted (dotted curve). Therefore, the gyro-whistler wave
is primarily damped by the perpendicular viscosity. On the
other hand, ambipolar diffusion is the main damping agent
of the gyro-Hall wave [panel (c)]. The solid curve in the panel
(c) is for ν2 = 2 ν4 (but without ambipolar), dashed curve is
for ν2 = 0 , βi = 1 and dotted curve is for ν2 = 2 ν4 , βi = 1.
By setting ν2 = ηH = ηA = 0 but in the presence of shear.
dispersion relation Eq. (39) becomes

σ4 + C2 σ
2 + C0 = 0 , (54)

where

C2 = 2ωA
2 − sω4 + ω2

4 , C0 = ωA
4(1− s

ν4
v2A

) . (55)

Note that the gyroviscosity channels the shear energy to

waves. Like Hall, the presence of shear flow destabilizes gy-
roviscous wave if C0 < 0, or

s > ωgh . (56)

Instability is caused by the gyroviscous momentum transport
across the magnetic field due to finite Hall frequency and
is similar to the ion-cyclotron instability of Quataert et al.
(2015). Except for the numerical factor (∼ β), the onset con-
dition for the gyroviscous, Eq. (56) and Hall, Eq, (68) are
exactly opposite of each other. However, like Hall, gyrovis-
cous instability depends on the orientation of the magnetic
field. Therefore, for a given orientation of the magnetic field
in the network and internetwork region the sign of flow gradi-
ent will determine whether Hall, or gyroviscosity will channel
the shear energy to the waves.
Why is the onset condition for the gyroviscous and Hall

instabilities, Eq. (68) and Eq. (56) have opposite sign? This
is due to the fact that while shear generates δby from δbx, it
acts as a sink for δvy due to δvx. This is reflected in the sign
difference of the shear term in the momentum Eq. (B3) and
induction Eq. (B4).
Adopting vA , ν4 as units, we may write ωA = k , ω4 = k2

and the dispersion relation, Eq. (54) becomes

σ4 + (k2 + 2− s)k2 σ2 + k4(1− s) = 0 . (57)

The discriminant of the above equation is

∆ = k4
[ (

k2 − s
)2

+ 4 k2
]

≡ k4 r2 . (58)

From the growth rate of the instability

σ =

(

2 (s− 1) k2

k2 + r − (s− 2)

)1/2

, (59)

we derive the following limiting cases

σ =

{

k
√
s− 1 , for small k, r ≈ s,√

s− 1 , for k ≫ 1, r ≈ k2 .
(60)

Here σ and s are in the unit of v2A/ν4. Thus in dimensional
form, the above equation is

σ =







k
√

s ν4 − v2A , for small k, r ≈ s,
(

v2

A

ν4

)1/2
√

s− v2

A

ν4
, for k ≫ 1, r ≈ ω4 .

(61)

In Fig. (8, top frame) growth rate, σ(k) is plotted for
1 < s 6 2. For small k the growth rate, in conformity
with Eq. (60), grows linearly with k. However, the growth
rate saturates quickly and asymptotically approaches con-
stant

√
s− 1 for large k. As there is no dissipation in the

present case, the growth rate remains constant at all wave-
lengths.
The growth rate has a maximum only if s > 2. In order

to see this we rewrite the dispersion relation, Eq. (57) as
a k4 + b k2 + c = 0 with

a = 1− s+ σ2 , b = (2− s) σ2 , c = σ4 (62)

and set the discriminant b2 − 4 a c = 0 which gives the maxi-
mum growth rate

σ0 =
s

2
. (63)

Except for the sign, this is identical to the maximum Hall in-
stability growth rate (Pandey & Wardle 2012). See Eq. (71)
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Figure 9. The growth rate σ against k is plotted for s = 2 , 3 , 4 , 5
.

below. The wavenumber, corresponding to the maximum
growth rate is

k0 =

(

s/2

(s− 2)

)1/2

. (64)

In Fig. (8, lower frame) the growth rate. σ(k) is plotted
for s > 2. We see that σ(k) increases linearly with k, reaches
maximum at k0 before asymptotically approaching

√
s− 1.

In Fig. (9) we plot the growth rate, Eq. (66) against k for
different shear rate s which is labelled against the curve. The
growth rate increases with increasing k, reaching maximum at
k0 before declining asymptotically to

√
s− 1 at large k. With

increasing shear energy, i.e., with increasing s, the growth
rate increases.

Like Hall, Eq. (54) can be analysed in different limits.
(I.) Cyclotron limit: Momentum transport due to gyro-

viscosity is balanced by the fluid advection. This is the short
wavelength (ωA ≫ σ) limit in which we set σ = 0 in Eq. (B3)
(Appendix B), or a = 0 in Eq. (62). The instability condition
is same as Eq. (56), The instability growth rate is

√
s− 1

(Eq. 60).
(II) Gyrovisocus limit: Momentum transport due to gy-

roviscosity in this case is balanced by the fluid inertia. This
is the long wavelength (k ≪ 1) limit in which from Eq. (B3)
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Figure 10. The growth rate σ against k for s = 1.8 is plotted
for (a) ν2/ν4 = 0 , 0.1 , 1, and ηP /ν4 = 0, (b) ν2/ν4 = 0, and
ηP /ν4 = 0 , 0.3 , 1, (c) ν2/ν4 = ηP /ν4 = 0 , 0.1 , 1.

(Appendix B) we get σ2 + (2− s) k2 = 0, or

σ = k
√
s− 2 , (65)

i.e., the long wavelength fluctuations grows only if s > 2.
Plugging k = k0 from Eq. (64) in the above equation, we
recover maximum growth rate, s/2 (Eq. 63).
Case II: ω2 6= 0 , ωP 6= 0 , ωW = 0

For comparison in Fig. 10 we plot the growth rate of the gy-
roviscous instability when ω2 = ωP = 0 (curve labeled by 0).
In the presence of perpendicular viscosity (ω2 = k2 ν2 6= 0)
but without magnetic diffusion (ωP = 0), gyroviscous insta-
bility grows only at long wavelengths [Fig. 10(a)] with the
cutoff determined by

k2
c =

1

ν2

(

2 (s− 1) k2

k2 + r − (s− 2)

)1/2

. (66)

Thus we see that with increasing ν2/ν4 from 0.1 to 1 gyro-
viscous instability stops growing at shorter wavelengths.
In the presence of magnetic diffusion (ωP 6= 0) but without

perpendicular viscosity (ω2 = 0) [Fig. 10(b)], the instability
keeps growing at all wavelengths with the asymptotic be-
haviour given by Eq. (60). However, as Ohm and ambipolar
diffusion are dissipative in nature, the growth rate σ decreases
with increasing ωP .
When ω2 = ωP 6= 0 [Fig. 10(c)], instability grows at a

much lower rate than when perpendicular viscosity and Ped-
ersen diffusion operates separately. The cutoff wavenumber is
shifted to slightly lower values compared to [Fig. 10(a)]. How-
ever, the change to wavenumber is not significant compared
to the growth rate.
Case III: Hall case (ω4 = ω2 = ωP = 0)

Although the effect of Ohm, Hall and ambipolar diffusion
on the linear wave propagation in the solar atmosphere
has been investigated in the past (Pandey & Wardle 2008;
Pandey et al. 2008; Pandey & Wardle 2012, 2013), we briefly
revisit this topic here.
The dispersion relation, Eq. (39) reduces to Eq. (54) except
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now

C2 = 2ωA
2 + s ωW + ω2

W , C0 = ωA
4

(

1 +
s

ωH

)

. (67)

In the absence of shear flow, i.e. s = 0 we recover the low
(ω ≪ ωA) and high (ωA ≪ ω) frequency left circularly po-
larized ion–cyclotron (ω = ωH) and right circularly polarized
whistler (ω = ωW = k2 ηH) waves respectively.The presence
of shear flow destabilises these waves only if C0 < 0, or

−s > ωH , (68)

with the growth rate

σ =

(

−2 (s+ ωH) ωA
2

s+ 2ωH + ωW + r

)1/2

. (69)

Here r2 = (ωW + s)2 + 4ωA
2. From Eq. (69) we see that

for ωA/ωH ≪ 1, r ≈ s and σ = −i ωA, i.e., purely oscillatory
mode. As it is only Hall that can channel the free shear energy
to the waves, it is not surprising that in the ωA/ωH ≪ 1 limit,
which correspond to the first quadrant of Fig. 1 in Pandey
(2018), there is no growth rate but pure Alfvén oscillation.

When ωA/ωH ≫ 1, r ≈ ωW and from Eq. (69) we obtain

σ ≈ (−sωH)1/2 , (70)

which we recognise as the growth rate of the ion-cyclotron
wave [Eq. (53) in Pandey & Wardle (2013)].

The maximum growth rate

σ0 =
−s

2
, (71)

is reached at

k0 =

(

−s2/2 ηH
s+ 2ωH

)1/2

. (72)

In the cyclotron (σ ≪ ωA) limit, the dispersion relation,
Eq. (57) with coefficients, Eq. (67) becomes

(2ωA
2 + s ωW + ω2

W ) σ2 + ωA
4

(

1 +
s

ωH

)

= 0 , (73)

with the instability criteria, Eq. (68).
In the diffusive (σ ≫ ωA) limit, the dispersion relation,

Eq. (57) with coefficients, Eq. (67) becomes

σ2 + ωW (s+ ωW ) = 0 , (74)

with the necessary condition for the instability becoming

−s > ωW ≡ k2 ηH (75)

while the maximum growth rate is given by Eq. (71).
The effect of perpendicular viscosity, ω2 and ambipolar dif-

fusion is same as in the gyroviscous case.

4 DISCUSSION

The identification and understanding of the wave propaga-
tion and heating in the partially ionized solar atmosphere
is a major problem in the solar physics. Quantitative MHD
modelling of the weakly ionized and weakly magnetized pho-
tosphere and weakly ionized and moderately (strongly) mag-
netized middle (upper) chromosphere suggests that the non-
ideal MHD effect such as Ohm, Hall and ambipolar diffusion
are important to the wave propagation and heating in the
chromosphere, transition region and corona.

The one dimensional modelling of the solar atmosphere
suggests that in the photosphere and lower and middle chro-
mosphere, the neutral Hydrogen density far exceeds the
plasma number density whereas in the upper chromosphere
and transition region the plasma number density exceeds neu-
tral hydrogen density by orders of magnitude (Fontenla et al.
1993). This fact coupled with the changing ion magnetiza-
tion changes the scale and nature of plasma transport in
the solar atmosphere. For example, the ion Larmor radius
becomes a function of the fractional ionization and result-
ing finite Larmor radius effect manifests over macroscopic (∼
few to few hundred kilometer) scales. Thus not only the in-
duction equation but momentum equation should also reflect
this non-ideal feature in the partially ionized photospehere-
chromosphere and transition region.

Non-ideal magnetic diffusion (via Ohm, ambipolar and
Hall) and viscous momentum transport (due to parallel, per-
pendicular and gyroviscous terms in the pressure tensor)
competes with each other throughout the solar atmosphere.
The parallel and perpendicular viscous momentum transport
which is caused mainly by the neutrals and is almost inde-
pendent of the ion magnetization, competes with the Hall
and ambipolar diffusion of the magnetic field in the photo-
sphere and lower and middle chromosphere. In fact for a weak
(< 50G) magnetic field at the footpoint, the perpendicu-
lar viscosity may dominate ambipolar diffusion in the upper
chromosphere.

The gyroviscosity is like Hall, except it is caused by the
magnetized ions. Thus the upper chromosphere is subject to
two, comparable non–ideal MHD effect: one causing the am-
bipolar slippage of the ions against the sea of neutrals (re-
sulting in magnetic diffusion) and the other causing the gyro-
viscous transport of the momentum. In the transition region
however, ambipolar diffusion disappears, and owing to the
strong ion magnetization (βi ≫ 1) another non–dissipative,
non–ideal MHD effect, namely gyroviscous transport of the
momentum becomes important. The magnetic flux through
the surface area ~S of the tube

∫

~B · d~S is frozen at this alti-
tude.

In the solar quite regions of the upper chromosphere and
transition layers (B0 ∼ 100G), where the ions are strongly
magnetized (βi ≫ 1), both the left and right circularly po-
larized gyroviscous waves are excited in the medium at fre-
quencies much smaller (larger) than the corresponding Hall
(whistler) frequencies. Since plasma beta, β & 103 in this
region, left circularly polarized gyroviscous waves [Eq. (48)]
will propagate at a much lower (about thousand times) fre-
quency than the right polarized [Eq. (50)] waves. As ηH =
108 cm2 s−1 for B0 = 100G (Fig. C1) we see from Eq. (50)
that ω ∼ 1012 k2. In the active regions, for a kG field, the fre-
quency can increase by couple of order of magnitude. Thus
it should be possible the detect few hundred km wavelength
waves of frequencies ω ∼ 103 − 104 s−1 in the upper chromo-
sphere and transition region.

Solar prominences and filaments are relatively cool (∼
104 K) partially ionized large–scale magnetic structures lo-
cated in the corona. More like cosmic abundances they are
composed of atomic hydrogen (∼ 90%) and Helium. The frac-
tional ionization in the prominences is unknown and could
be as low as 0.1 or, as large as 10 (Patsourakos & Vial 2002).
As the ions are magnetized it would appear that not only
the ambipolar diffusion (Soler at al. 2009) but the gyrovis-
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cous effect will also affect the wave propagation in the fila-
ments. Assuming B = 5G and ρ = 5 × 10−14 g cm−3 we get
vA ∼ 10 − 100 km/s. For typical cs ∼ 10 km s−1 the plasma
β . 1. Thus both the low and high frequency gyroviscous
waves may propagate in the prominences and filaments.

Although direct signature of the gyroviscous waves may be
difficult to detect, these waves may become unstable in the
presence of vortex motion in the fluid. Both the Hall and
gyroviscous instabilities require favourable velocity gradient.
As β is large in the transition region [Fig. 6)], any favourable
field geometry will ensure that the onset condition of the in-
stability, s & ωH/β [Eq. (56)] is easily met. Note that the
Hall diffusion of the magnetic field and gyroviscous momen-
tum transport operate in different ion magnetization windows
and the onset condition of the Hall and gyroviscous instabil-
ities are mutually exclusive.

As the presence of swirls of various sizes have been
observed in the chromosphere and transition region the
gyroviscous effect may excite low frequency turbulence.
Observations and numerical simulations suggest ubiqui-
tous presence of flow gradients in the photospheric–
chromospheric plasma (Yadav et al. 2021; Bonet et al. 2008;
Attie et al. 2009; Wedemeyer-Böhm & Voort 2009; Zirker
1993; Stein & Nordlund 1998). The typical vorticity of a
vortex is ∼ 6× 10−3 s−1 corresponding to a rotation period
of ∼ 35 minutes (Bonet et al. 2010). Thus it would appear
that the gyroviscous instability does not have time to de-
velop since the growth rate (|v0′|/2 = 3 × 10−3 s−1) is very
small. However, above vorticity value is limited by the upper
limit in the vorticity resolution (∼ 4× 10−2 s−1, Bonet et al.
(2010)). The numerical simulation gives much higher vortic-
ity value (∼ 0.1− 0.2 s−1) in the photosphere–lower chromo-
sphere (Fig. 31, Stein & Nordlund (1998)). The growth rate
corresponding to |v0′| = 0.2 s−1 is one minute. Therefore, it
is quite likely that the gyroviscous waves in the transition
region will become unstable in the presence of shear flow
given that the maximum wavelength corresponding to the
maximum growth rate fits within the pressure scale height
(∼ 150 km), i.e. k0 h & 1.

Note that in this work we have assumed linear shear profile.
However, recent numerical simulation (Yadav et al. 2021),
suggest that a cubic profile is better suited to the rotational
flows. Closer to the photosphere, the linear shear profile is off
by about 10% from the simulated vortex profiles. It is only
at the base (∼ 0.5Mm) of the chromosphere that the error
becomes ∼ 5%. As gyroviscous instability is important in
the transition (& 2.0Mm) region, we conclude that the linear
shear profile is a good approximation to the vortex flows.

The net radiative loss from the chromosphere ∼
107 erg cm−2 s−1 is an order of magnitude greater than that of
the overlying corona. To heat the chromosphere to 104 K ten
times more energy flux is required than to heat the corona to
million degree. It is believed that most of the solar heating
takes place in the chromosphere where the convection en-
ergy is transported by some physical mechanism. It is quite
plausible that the present gyroviscous shear instability may
contribute towards heating by driving the turbulence in the
chromosphere. However, only numerical simulations can pro-
vide a definitive answer to what role the gyroviscous shear
instability will have in the heating of the chromosphere.

5 SUMMARY

The partially ionized solar photosphere–chromosphere
mainly consists of neutral Hydrogen with a modest fraction of
Helium. The ratio of plasma to neutral number density is very
low in the medium. This tiny fraction of charged particle un-
dergo frequent collision and also as frequently they exchange
their identity with the neutrals. Thus the magnetic stress is
easily passed to the neutrals over collision/charge exchange
time scale which results in various non–ideal MHD effects
(Pandey & Wardle 2008). Not only does the magnetic field
diffuse through the partially ionized medium due to the non–
ideal MHD effects but owing to collision and charge exchange,
the non–diagonal pressure tensor terms in the momentum
equation also become important. This leads on the one hand
to the viscous damping of the waves in the photosphere-
chromosphere, and on the other hand to the propagation of
the polarized gyroviscous waves in the transition region. In
the presence of shear flow gradient, these polarized waves
may become unstable in the upper chromosphere and the
transition region. The presence of favourable magnetic field
topology will facilitate the transfer of shear energy to the
magnetic fluctuations.
The following are the itemized summary of the present

work.
1. The effective Larmor radius in a partially ionized plasma

is a function of fractional ionization. Thus the finite Larmor
radius effect, which manifests as viscous momentum trans-
port, operates over macroscopic scale in the solar atmosphere.
2. The parallel and perpendicular viscosity is important in

the photosphere-chromosphere and competes with the non-
ideal Pedersen and Hall magnetic diffusion. In the upper chro-
mosphere perpendicular viscosity may dominate ambipolar
diffusion while in the transition region where ambipolar dif-
fusion disappears, dominant viscosity is gyroviscosity.
3. In the presence of a purely vertical magnetic field po-

larized gyroviscous wave may propagate undamped along the
field line in the transition region.
4. In the presence of shear flow gradient these waves may

become unstable. The maximum growth rate of the instabil-
ity (∼ few minute) is proportional to the shear gradient.
5. Although the maximum growth rate of the gy-

roviscous instability is identical to the Hall instability
(Pandey & Wardle 2012) the onset condition in the two cases
are opposite of each other.
6. As the gyroviscous waves of few hundred km wavelength

falls within the current observational resolution (∼ 100 km),
it should be possible to identify these waves and associated
instabilities in the transition region.
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Bonet J. A., Maŕquez I., Sánchez J. A., Cabello I. & Domingo V.
2008, ApJ, 687, L131
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APPENDIX A: THE VISCOUS TENSOR
COMPONENTS IN A PARTIALLY IONIZED
FLUID

The detailed derivation of the ion and neutral viscosity coef-
ficients, η are given by Zhdanov (2002). Assuming Ti = Te =
Tn = T , the ion and neutral viscosity coefficients are

ηi 0 =
pi
2 νi

ξi ∆
−1
η , ηi 1 =

ηi 0

1 +∆−2
η β2

i

,

ηi 2 = ηi 1
[βi

2

]

, ηi 3 = ηi 1 βi ∆
−1
η , (A1)

and

ηn 0 =
pn
2 νn

ξn ∆−1
η , ηn 1 = ηn 0

1 + β2
i ξ

−1
n ∆−1

η

1 + β2
i ∆

−2
η

,

ηn 2 = ηn 1

[βi

2

]

, ηn 3 = ηn 0 βi ∆
−1
η

1−
(

∆η

ξn

)

1 +
(

β2

i

∆2
η

) , (A2)

ηi ,n 4 = ηi ,n 3

[βi

2

]

(A3)

where the square bracket [βi/2] means that wherever βi oc-
curs they should be replaced by βi/2 to get the new viscosity
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coefficients. Here we use slightly more general definition of
Hall beta than in Eq. (2), i.e., βi = ωci/νi.

The collision frequencies in the above expressions are

να = 0.3 ναα +
∑

β 6=α

fαβ ναβ , (A4)

where

fαβ =
mα mβ

(mα +mβ)
2

[

1 + 0.6

(

mβ

mα

)

A∗
αβ

]

. (A5)

Defining

gαβ =
mα mβ

(mα +mβ)
2

[

1− 0.6

(

mβ

mα

)

A∗
αβ

]

, (A6)

we may write other parameters in the viscosity coefficients as

ξα = 1 + gαβ

(

ναβ

νβ

)

,

∆η = 1− gαβ gβ α
ναβνβ α

νανβ
(A7)

For hard sphere collision model A∗
αβ = 1. As solar pho-

tosphere is a mixture of atomic hydrogen (90%) and He-
lium (10%), the helium mass density is 0.1 × 4 hydrogen
density, ρH . Thus the total gas density ρ = 1.4 ρH . The
gas number density, n in terms of hydrogen number density
nH is n = 1.1nH . This results in the average neutral mass
mn = ρ/n = 1.3mH . Assuming mi = mp and mn = 1.3mp

where mp = 1.67× 10−24 g is the proton mass, we get fi n =
0.44 , fn i = 0.36 and fi e = 0.5 × 10−3 , fn e = 0.4 × 10−3.
Thus the collision frequencies becomes

νi = 0.3 νii + 0.44 νin ++0.5× 10−3 νie ,

νn = 0.3 νnn + 0.36 νni + 0.4 × 10−3 νne . (A8)

The electron-ion collision frequency νei is (Zhdanov 2002)

νei =
8
√
π

3

e4 ne L

m
1/2
e

(kB T )−3/2 s−1 , (A9)

where Coulomb logarithm, L = ln(3 kB T λD/e2) with the
Debye length λD =

√

4π ne e2/kB T . For L = 22 in the
photosphere-chromosphere, νei can be expressed in terms of
fractional ionization Xe

νei = 98Xe nn T−3/2 s−1 (A10)

where T and nn are in K and cm−3 respectively. Note that the
collision frequency, νei of Zhdanov (2002) is twice the value
of (Braginskii 1965) and in Pandey & Wardle (2008) owing
to slightly different definition of the collision relaxation time.

Thus

νie =

(

me

mi

)

νei ≡ 5.35× 10−2 Xe nn T−3/2 s−1 . (A11)

The ion–ion collision frequency is

νii =

√

2me

mi
νei = 3.24Xe nn T−3/2 s−1 , (A12)

where we have assumed ni = ne.
The neutral–neutral collision frequency is

νnn = nn σ vth s−1 , (A13)

where vth is the thermal speed of the neutral particle. Tak-
ing hydrogen cross-section σ ≈ 10−14 cm−2 (Vranjes 2016),
neutral-neutral rate coefficient for mn = 1.3mp becomes

σ vth = 7.97 × 10−11 T
1

2 cm3 s−1 . (A14)

The plasma–neutral collision frequency νjn is
(Wardle & Königl 1993)

νjn = γjn ρn =
< σv >j

mn +mj
ρn . (A15)

Here < σv >j is the rate coefficient for the momentum trans-

fer by collision of the jth particle with the neutrals. The
H+ −H collision cross-section is energy dependent [Fig. 12,
Pinto & Galli (2008)] and for [0.5−10] eV which is relevant to
the photosphere–transition region σ ≈ 10−14 cm2. The e−H
collision cross-section, Fig. 14 (Pinto & Galli 2008) for low
(1 . eV ) energies is σ ≈ 4×10−15 cm2 whereas for [1−10] eV ,
σ ≈ 10−15 cm2. We adopt σ ≈ 2.12× 10−15 cm2 which repro-
duces Draine et al. (1983) electron-neutral rate coefficient.
Thus the ion-neutral and electron-neutral rate coefficients are

< σ v >in = 0.5× 10−10 T
1

2 cm3 s−1

< σ v >en = 8.28× 10−10 T
1

2 cm3 s−1 . (A16)

The corresponding collision frequencies are

νin = 0.51× 10−10 nn T
1

2 s−1 ,

νen = 8.28 × 10−10 nn T
1

2 s−1 . (A17)

Taking account of the various plasma–neutral collision fre-
quencies we may write Eq. (A8) as

νi ≈
(

0.44 + 1.9 × 1010 Xe T
−2

)

νin . (A18)

Below 1Mm in the solar atmosphere, νi ≈ νin. Between 1−
2.1Mm, νii > νin. As the neutral density plummets in the
transition region, νin becomes smaller by orders of magnitude
compared to νii.
The ratios of ion and neutral viscosity coefficients,

Eq. (A1)-(A2) are

ηi 1
ηi 0

∼ 1

β2
i

,
ηi 3
ηi 0

∼ 1

βi

ηn 1

ηn 0

∼ O(1),
ηn 3

ηn 0

∼ ξn −∆η

βi
. (A19)

As the perpendicular −b × (b × ∇) and gyroviscous, b ×

∇ ion viscosity coefficients ηi 1, and ηi 3 are 1/β2
i and 1/βi

smaller than the parallel coefficient, ηi 0, the ion gyroviscosity
dominates the ion perpendicular viscosity when βi > 1. The
neutral perpendicular viscosity coefficient, ηn 1 is comparable
to the parallel coefficient, ηn 0 while neutral gyroviscous term
ηn 3 is negligible compared to the ηn 0. The ratio of ion and
neutral parallel viscosity coefficients is

ηi 0
ηn 0

∼ ni

nn

νn
νi

. (A20)

In the photosphere-chromosphere, where neutral hydrogen
density is the dominant component of the partially ionized
gas, ηn 0 is orders of magnitude larger than ηi 0 (Fig. 3). How-
ever, in the transition region, where neutral number density
sharply drops, ηi 0 becomes orders of magnitude larger than
ηn 0 [Fig. 3 (lower frame)]. As the parallel viscosity, ν0 is
the sum of ηi 0 and ηn 0, it keeps steadily growing and domi-
nates gyrovisocity in the photosphere-chromosphere Fig. A1.
The perpendicular viscosity, ν1 and ν2 are identical to ν0 ow-
ing to ηn 1 ,2 ∼ ηn 0. Therefore, both the parallel (ν0) and
perpendicular (ν1 , ν2) vicosity dominats gyroviscosity in the
photosphere-chromosphere.
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Figure A1. The parallel, ν0 (solid line), and gyroviscosity ν3 (dot-
ted line) are plotted against the height. Other parameters are the
same as in the previous figures.

The ratio of ion and neutral gyroviscosity coefficient η3 is

ηi 3
ηn 3

∼
(

ηi 0
ηn 0

)

1

ξn −∆η
. (A21)

As ξn −∆η is close to zero in the photosphere-chromosphere
and is 0.1 in the transition region, ηi 3 dominants ηn 3

throughout the solar atmosphere. Thus, the gyroviscosity, ν3
is mainly due to the ion gyroviscosity and dominates ν0 , ν1
and ν2 in the transition region (Fig. A1, lower frame). To
summarize, the parallel and perpendicular viscosity is the
dominant FLR viscosity in the photosphere-chromosphere
whereas cross FLR viscosity is dominant FLR effect in the
transition region.

Various components of the strain Wαβ are

W
≈ 0

=
3

2

(

b ·W
≈

· b
)

(

bb− 1

3
I
≈

)

,

W
≈ 1

=
(

I
≈

− bb
)

·W
≈

·
(

I
≈

− bb
)

− 1

2

(

I
≈

− bb
)(

I
≈

− bb
)

: W
≈

,

W
≈ 2

=
(

I
≈

− bb
)

·W
≈

· bb+Transpose ,

W
≈ 3

=
1

2

[

b×W
≈

·
(

I
≈

− bb
)

+Transpose
]

,

W
≈ 4

= b×W
≈

· bb+ Transpose . (A22)

In the component form W
≈

is

Wxx =
4

3
∂xvx − 2

3
(∂yvy + ∂zvz) ,

Wyy =
4

3
∂yvy − 2

3
(∂xvx + ∂zvz) ,

Wzz =
4

3
∂zvz − 2

3
(∂xvx + ∂yvy) , (A23)

and the remaining symmetric part is

Wxy = ∂xvy + ∂yvx ,

Wxz = ∂xvz + ∂zvx ,

Wyz = ∂yvz + ∂zvy . (A24)

In the presence of a vertical magnetic field, i.e. b = z,

bb− 1

3
I
≈

=





−1/3 0 0
0 −1/3 0
0 0 2/3



 . (A25)

As b ·W
≈

· b = Wzz we have

W
≈ 0

=





−Wzz/2 0 0
0 −Wzz/2 0
0 0 Wzz



 . (A26)

Similarly

(

I
≈

− bb
)

·W
≈

·
(

I
≈

− bb
)

=





Wxx Wxy 0
Wyx Wyy 0
0 0 0



 . (A27)

As
(

I
≈

− bb
)

: W
≈

= Wxx +Wyy we have

(

I
≈

− bb
)(

I
≈

− bb
)

: W
≈

=





Wxx +Wyy 0 0
0 Wxx +Wyy 0
0 0 0



 .

(A28)
Thus

W
≈ 1

=





1

2
(Wxx −Wyy) Wxy 0

Wyx − 1

2
(Wxx −Wyy) 0

0 0 0



 ,

W
≈ 2

=





0 0 Wxz

0 0 Wyz

Wzx Wzy 0



 . (A29)

As

b×W
≈

=





−Wyx −Wyy −Wyz

Wxx Wxy Wxz

0 0 0



 , (A30)

we have

b×W
≈

·
(

I
≈

− bb
)

=





−Wyx −Wyy 0
Wxx Wxy 0
0 0 0



 , (A31)

Adding the above matrix with its transpose gives

W
≈ 3

=
1

2





−2Wxy Wxx −Wyy 0
Wxx −Wyy 2Wxy 0

0 0 0



 , (A32)

For W
≈ 4

note that

b×W
≈

· bb =





−Wyx −Wyy −Wyz

Wxx Wxy Wxz

0 0 0



×





0 0 0
0 0 0
0 0 1



 =





0 0 −Wyz

0 0 Wxz

0 0 0



 . (A33)

Adding with its transpose gives

W
≈ 4

=





0 0 −Wyz

0 0 Wxz

−Wyz Wxz 0



 . (A34)

The above Eqs. (A26), (A29), (A32), and (A34) are also given
on page 252 by Braginskii (1965).
When the ion acquires neutral inertia due to its frequent

collision and/or due to rapid charge exchange with the neu-
trals, ion gyro frequency and consequently ion gyro radius
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becomes a function of fractional ionization. Furthermore,
the ion fluid moves under the combined pressure Pi + Pn

(Hazeltine & Waelbroeck 1998). Thus

ηi 3 ≈ Pi + Pn

2ωH
, (A35)

and ηi 4 ≈ 2 ηi 3. Defining

f =
1 +Xe

1 + 2Xe
, (A36)

which varies between one and two third between the photo-
sphere and transition region, we may write Pi + Pn = P f .
Assuming P = c2s ρ we may write ηi 3 in terms of ν3 as

ν3 =
1

2
RL

∗2 ωH . (A37)

Thus ν4 = 2 ν3 as ηi 4 = 2 ηi 3.
Combining the last two terms in Eq. (31) we get

Π
≈Λ

=
1

2
ν3
[

b×W
≈

·
(

I
≈

+ 3bb
)

+Transpose
]

, (A38)

which in matrix form becomes

Π
≈Λ

0.5 ν3
=





−2Wyx Wxx −Wyy −4Wyz

Wxx −Wyy 2Wxy 4Wxz

−4Wyz 4Wxz 0



 .

(A39)
Note that gyroviscosity has nothing to do with the viscosity
as the associated viscous stresses, Eq. (30) are always per-
pendicular to the velocity, implying that there is no viscous
dissipation associated with Π

≈Λ
.

Lastly, the various components of the symmetric tensor Π
≈

are

Πxx/ρ =
ν0
2

Wzz − ν1
2

(Wxx −Wyy)− ν3 Wxy ,

Πyy/ρ =
ν0
2

Wzz +
ν1
2

(Wxx −Wyy) + ν3 Wxy ,

Πzz/ρ = −ν0 Wzz

Πxy/ρ = −ν1 Wxy +
ν3
2

(Wxx −Wyy) ,

Πxz/ρ = −ν2 Wxz − 2ν3 Wyz ,

Πyz/ρ = −ν2 Wyz + 2ν3 Wxz . (A40)

Making use of Wzz = −(Wxx + Wyy) in Πxx and Πyy

the above equation reduces to equation (2.21) of Braginskii
(1965).

APPENDIX B: WAVES IN A HOMOGENEOUS
MEDIUM

We shall assume a partially ionized solar plasma threaded
by the vertical magnetic field, b = z. As the Larmor scale
over which the various FLR viscosity affects the transport
properties of the plasma is large in the transition region, we
shall focus on the role of ion viscosity, νi 3 on the wave prop-
agation in the medium. We provide a brief discussion on the
effect of parallel viscosity towards the end of this appendix.
We want to derive a linear dispersion relation in the presence
of gyroviscous effect. To that end note that the components

of ∇ · Πare

(∇ · Π)x/ρ =
ν0
2
∂xWzz − ν1 ∇2

⊥vx − ν2 ∂zWxz

−ν3
(

∇2
⊥vy + 2 ∂zWyz

)

,

(∇ · Π)y/ρ =
ν0
2
∂yWzz − ν1 ∇2

⊥vy − ν2 ∂zWyz

+ν3
(

∇2
⊥vx + 2 ∂zWxz

)

, (B1)

and

(∇ ·Π)z/ρ = −ν0 ∂zWzz − ν2
[

∇2
⊥vz + ∂z (∂xvx + ∂yvy)

]

−2 ν3 ∂z (∂xvy − ∂yvx) . (B2)

Here ∇2
⊥ = ∂2

x + ∂2
y . After linearizing Eqs. (34) and (36)

and assuming that δ f ∝ exp (σ t+ i k z) for the transverse
components we have

(

σ + ω2 ω4

s− ω4 σ + ω2

)

δv⊥
vA

= i ωA δb⊥ , (B3)

and
(

σ + ωP ωW

− (s+ ωW ) σ + ωP

)

δb⊥ = i ωA
δv⊥
vA

. (B4)

Here ηP = ηO + ηA is the Pedersen diffusion coefficient,
ω2 = k2 νn 2 , ω4 = k2 νi 4, and the whistler and Pedersen
frequencies are, ωW = k2 ηH , ωP = k2 ηP . From Eqs. (B3)
and (B4) we get the dispersion relation, Eq. (39).
The longitudinal component of the dispersion relation be-

comes

ω2 − k2 c2s −
4

3
i ω k2 ν0 = 0 , (B5)

which describes the damped sound waves

Re(ω)2 = k2 c2s −
4

9

(

k2 ν0
)2

(B6)

with the damping rate

Im(ω) =
2

3
k2 ν0 . (B7)

APPENDIX C: MAGNETIC DIFFUSIVITIES

In Fig. (C1), we plot magnetic diffusivities against height
for B0 = 100G. Ohm diffusion, ηO is independent of the
magnetic field whereas Hall, and ambipolar scales as ηH ∝
B , ηA ∝ B2 with the magnetic field. Thus in the active
regions of the sun, i.e. in the presence of stronger (∼ kG)
field, ambipolar is more likely to dominate the Hall diffusion
whereas in the quiet region of the sun Hall may dominate
ambipolar.
Note that the diffusivities are also given in

Pandey & Wardle (2012, 2013), where we have used
mi = 30mp, mn = 2.3mp which is relevant to the molecular
clouds. For atomic hydrogen (90%)-Helium(10%) mixture
in the solar photosphere, mi = mp, mn = 1.3mp which
has been used in the present case. Further, the modified
collision rates (Pinto & Galli 2008) are also used. The data
of Fig. (C1) is given in table C.
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height log10 ηO/cm2 s−1 log10 ηH/cm2 s−1 log10 ηA/cm2 s−1

0 7.4620 6.8113 4.1025
50 7.9352 7.3746 4.7562
100 8.0910 7.6353 5.1218
150 8.1465 7.8051 5.4058
200 8.1633 7.9428 5.6645
250 8.1649 8.0703 5.9179
300 8.1621 8.1984 6.1768
350 8.1576 8.3272 6.4389
400 8.1537 8.4600 6.7086
450 8.1468 8.5934 6.9821
490 8.1371 8.6980 7.2010
525 8.1261 8.7885 7.3931
560 8.1138 8.8782 7.5848
600 8.0922 8.9733 7.7966
650 8.0313 9.0535 8.0179
705 7.8525 9.0225 8.1346
755 7.6121 8.9083 8.1466
805 7.3750 8.7928 8.1523
855 7.1475 8.6806 8.1553
905 6.9903 8.6348 8.2203
980 6.7752 8.5812 8.3275
1065 6.5499 8.5334 8.4558
1180 6.2709 8.4828 8.6305
1278 6.0529 8.4499 8.7782
1378 5.8423 8.4180 8.9179
1475 5.6546 8.3936 9.0470
1580 5.4546 8.3647 9.1726
1670 5.2924 8.3439 9.2732
1775 5.1125 8.3252 9.3833
1860 4.9587 8.3009 9.4487
1915 4.8490 8.2768 9.4724
1980 4.7011 8.2373 9.4741
2017 4.6008 8.2065 9.4543
2043 4.5231 8.1823 9.4301
2062 4.4606 8.1624 9.4045
2075 4.4143 8.1481 9.3820
2087 4.3699 8.1351 9.3590
2110 4.2878 8.1124 9.3122
2140 4.1914 8.0926 9.2561
2168 4.1374 8.0921 9.2350

2190 4.0895 8.0936 9.2095
2199 3.7707 7.9793 8.8291
2200 3.6319 7.9344 8.6417

2200.84 3.5144 7.9022 8.4753
2201.16 3.4649 7.8942 8.4026
2201.56 3.4101 7.8930 8.3203
2201.83 3.3776 7.8979 8.2712
2202.22 3.3313 7.9078 8.2006
2202.70 3.2704 7.9211 8.1086
2203.16 3.1948 7.9276 7.9926
2203.63 3.1036 7.9277 7.8518
2204.13 2.9944 7.9225 7.6848
2204.66 2.8622 7.9058 7.4754
2205.18 2.7244 7.8854 7.2596
2205.70 2.5783 7.8590 7.0280
2206.27 2.4120 7.8263 6.7661
2207.40 2.0923 7.7548 6.2535
2208.53 1.7782 7.6805 5.7510
2209.65 1.4751 7.6055 5.2657
2210.75 1.1828 7.5311 4.7978
2212.92 0.7771 7.4305 4.1477
2215.08 0.5171 7.3692 3.7308
2216.43 0.3983 7.3430 3.5408
2217.88 0.2854 7.3178 3.3598
2219.43 0.1027 7.2718 3.0679

Table C1. The Ohm (ηO), Hall (ηH ) and ambipolar (ηA) diffusion
profiles for B0 = 100G field. Other parameters are same as in the
figures.
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Figure C1. The Ohm (ηO), Hall (ηH ) and ambipolar (ηA) diffu-
sion are plotted against the height for B0 = 100G and mi = mp,
mn = 1.3mp. Hall scales with the magnetic field as ∝ B while
ambipolar scales as B2. Other parameters are the same as in the
previous figures.
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